Table 1. Broad areas of ecological theory that are foundational to the science of restoration ecology and are covered in the

Relevant	Ecological restoration	Examples of current themes,	Contributors
ecological theory	questions	issues, and models	
Population and	Which propagule sources and	Bottlenecks and founder events, drift in small populations,	Falk, Richards,
ecological	numbers should be	locally adapted genotypes, within- and among-population	Montalvo, and
genetics	introduced?	genetic diversity, inbreeding and outbreeding effects, genetic	Knapp
		neighborhoods and spatial genetics, effective population size,	(Chapter2)
		gene flow	
Ecophysiological	What are the potential	Stress tolerance, physiological limits of survival and	Ehleringer and
and functional	physiological challenges in the	reproduction, adaptation to novel environments, phenotypes	Sandquist
ecology	restored environment?	tolerant of unusual conditions	(Chapter 3)
Demography,	How can we tell if populations	Population dynamics, demographic transition matrices, seed	Maschinski
population	will persist?	dormancy and germination, population persistence and	(Chapter 4)
dynamics,		resilience, population spatial structure, age structure and density	

book. For each, examples of current issues and relevance to restoration are provided.

metapopulation		dependence, dispersal among sub-populations, metapopulation	
ecology		dynamics	
Community	What assemblages will persist	Community composition, coexistence of species, assembly	Menninger and
ecology	in each part of the site? In	theory, alternative successional pathways, sensitivity to initial	Palmer (Chapter
	what order should they be	conditions, predation, trophic structure, dispersal, environmental	5)
	introduced?	filters, disturbance regimes, mutualism	
Evolutionary	How will organisms adapt to	Evolutionary environment, adaptation to novel environments,	Stockwell,
ecology	potentially novel restored	trait selection, metapopulations, genetic diversity, evolutionary	Kinnison, and
	environments?	potential, landscape genetics	Hendry (Chapter
			6)
Fine-scale	How can sites be modified to	Spatial heterogeneity of resources and ecosystem functionality,	Larkin, Vivian-
heterogeneity	enhance diversity?	spatial and temporal variation at plant/individual animal and	Smith and Zedler
		community, co-existence of multiple species at multiple spatial	(Chapter 7)
		scales	

Food webs	Do interacting species need to	Trophic cascades, bottom-up / top-down dynamics, food web	Vander Zanden,
	be introduced?	networks, productivity – food web structure, plant-herbivore	Olden, and
		interactions, predator-prey theory, indirect interactions	Gratton, (Chapter
			8)
Ecological	How will the restored system	Trajectories of ecosystem degradation and recovery, natural	Suding and Gross
dynamics and	develop?	variability, linear and nonlinear dynamics, multiple stable states	(Chapter 9)
trajectories		vs. ordered succession, resilience, multiple equilibria, ecological	
		thresholds	
Biodiversity and	Can a single restoration site	Diversity-stability relationships, functional diversity, functional	Naeem (Chapter
ecosystem	maximize species richness and	equivalence, redundancy, interface between community and	10)
functioning	ecosystem functions?	ecosystem ecology, ecological insurance and ecosystem	
		reliability	
Invasive species	How should sites be managed	Properties of invasive species, community invasibility, alteration	D'Antonio and
and community	to exclude undesired species?	of ecosystem processes, plant community responses, resistance	Chambers
invasibility		and resilience, competition, top-down and bottom-up control,	(Chapter 12)

		disturbance theory	
Modeling and	How predictable are	Stochastic influences on deterministic processes, uncertainty,	Urban (Chapter
simulations	restoration outcomes?	natural range of variability, spatial interactions, heuristic and	11)
		simulation models, multivariate statistics	
Research design	How can we design	Replication, power analysis, sample size, general statistical	Osenberg, Bolker,
and statistical	restoration experiments and	framework, time series and repeated measures, chronosequence	White, St. Mary,
analysis	analyze the resulting data?	analysis, multivariate characterization, estimating effect size,	& Shima
		BACI designs	(Chapter 13)
Macroecology	How does the larger spatial	Large scale ecological processes, species and population	Maurer
	context influence an	migrations over time and space, ecosystem size and community	(Chapter14)
	individual restored site?	diversity/structure, cross-system fluxes	
Paleoecology,	How can we plan for global	Climatic cycles, climate-vegetation relationships and migration	Millar and
climate-change	change?	of vegetation, vegetation-climate (dis)equilibrium, natural	Brubaker
		variability, temporal variation	(Chapter 15)